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Single variable: f(x)

Table 16.1

Derivatives

f()

Several variables: f(x,y) and f(x, v, 2) U

’.D Pearson ALWAYS LEARNING

ax” ay’ dz

Integrals

Copyright © 2019, 2015, 2011 Pearson Education, Inc. Slide 2



Figure 16.2
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Figure 16.4 (2 of 2
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Double Integrals
A function f defined on a rectangular region R in the xy-plane is integrable on R if

AlimO D' f(xy. vi) AA; exists for all partitions of R and for all choices of (xy. ;)
V=1

within those partitions. The limit is the double integral of f over R, which we write

[[s6eman = i Srcivian

—0 %=1
3
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THEOREM 16.1 (Fubini) Double Integrals over Rectangular Regions
Let f be continuous on the rectangular regionR = {(x,y):a = x = b,c =y = d}.
The double integral of f over R may be evaluated by either of two iterated integrals:

Hf(X, y)dA = LdLbf(x,y)dx dy = Lbfcdf(x, y)dy dx.
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Example - Evaluate the double integral

2 1
f f (3x% + 4y3) dydx
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Example - Evaluate the double integral

f2f1(3x2+4y3) dy dx Reverse svohey 'me}
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Example - Evaluate double integral

" _dA R={(xy):0<x<1,0<y<1) 1
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Example - Find the volume 2
'
The solid in the first octant bounded above by the surface >

z = 9xy\/1 — x2,/4 — y2
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Example - Choose a convenient order
cosxy dA (x,y):0<x<1,0< SE
ﬂ yEosxy { Y 1 y 3} ‘ q
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Example - Choose a convenient order

ﬂycosxy dA R={(x,y):0§x§1,0§ygg}
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DEFINITION Average Value of a Function over a Plane Region
The average value of an integrable function f over a region R is

f= /f(x y) dA.

area of R

A\/e\ro-c,-e helﬁln‘k OJ{ _F(Xl‘j> = —“[{s) (Uol,v\m*e wnaley ‘&‘W\D)
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Example - Average value

Compute the average value of f over the region R.
f(xy) 4—x—y; R={(xy):0<x<20<y<2}

/\-vea Sf (4 X-WAA = £( : S;L (-X-Y) dxd)
Meo STR 2-2: >i‘§k (% xz
9 = %*Jb (8 -2-29)dYy

'b--// 5
| ’é:\ = "#j\, (e-2Y) Y
| =2 (C‘g—\g”)):' B AL
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Double Integrals over
General Regions
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z=f(x,y)

2
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= |lim
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}‘twmeal WVEAS
Yol Figure 16.11

YA VA |
v = h(x) VA

v = h(x)

vy = h(x)

y= g(.\') y = ‘k’(.\')
v = g(x)

o |

THEOREM 16.2 Double Integrals over Nonrectangular Regions

Let R be a region bounded below and above by the graphs of the continuous func-
tions y = g(x) and y = h(x), respectively, and by the lines x = a and x = b (Fig-
ure 16.11). If f is continuous on R, then

[[tesran = [* [ scs v
R
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phedyy Figure 16.15
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Let R be a region bounded on the left and right by the graphs of the continuous

functions x = g(y) and x = h(y), respectively, and the linesy = candy = d

(Figure 16.15). If f is continuous on R, then

Hf(x, y)dA = LdJ:((yy))f(x, y)dx dy.
R

x =g

—

= h(y)
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X X
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Example - Evaluate the double integral

1 ,x "

ffZexdydx d
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Example - Evaluate the double integral

ﬂysz R is the region boundedbyy =1,y =1—xandy = x — 1.
R

S\ Sbﬂ N

‘P Pearson ALWAYS LEARNING  Copyright © 2019, 2015, 2011 Pearson Education, Inc. Slide 7



Example - Evaluate the double integral

ﬂyzd/\ R is the region boundedbyy =1,y =1—xandy = x — 1.
R
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Example - Find the volume

2

Find the volume of the solid bounded between the cylinder z = sin“ x and the xy-plane

over the region R = {(x,y):0 < x < y < m}
Volure ﬂ- Frx-glo

7 R.
43 : ‘0 o x’)('cl)( d’
xX=Q S Sb S \D
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Example - Find the volume

Find the volume of the solid bounded between the cylinder z = sin? x and the xy-plane
over the region R = {(x,y):0 < x <y < m}

WSS T(iSV) (s )3y
So LS ( hees zx)a!xd‘q
= Jy (4% Fd | >

- (- oy a8t § s 0B

= (§ Trgoss21) - (397 o)
NS
& .
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Example - Reverse the order of integration

L 1 fo ~In yf(x, - ACS &cx»g)d‘{) X,
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V4
f Areas of Regions by Double Integrals
Let R be a region in the xy-plane. Then

=1 area of R = R//dA.
w\ AY‘”' [’D J{w&al‘Q TM'("""A.

y
X R }height =1 \/DLU\N fj\ LdN

R
Volume of solid = (area of R) X (height) \/b(lAM’-CLXA'« “R)
=area0fR=”1dA = kkwo'\ R
R

P«m"(’ c Kl o
(2N
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Example - Find the area

The region bounded by the parabola y = x? and the liney = x + 2.

| | [Z;L"’) Area(R) = ffldA

S Sx*-l e

X2 L.

| X=X =20
=] 2 1 -
¢ l’> | e e (g-—z) Ock\ )0
3 5 1 ; Y=-\ . X=1.
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Example - Find the area

The region bounded by the parabola y = x? and the line y = x + 2.
o= S [
- -1 57(" \ dv 6?(
z x

~ S_‘ MXL AX
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o) =§Lrost vsig)
Figure 16.29 4hkhe Tt e
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THEOREM 16.3 Change of Variables for Double Integrals over Polar
Rectangle Regions

Let f be continuous on the region R in the xy-plane expressed in polar coordinates
asR={(r,0):0=a=r=ba=60=p}, where 3 — a = 2. Then fis
integrable over R, and the double integral of f over R is

x=re+0
fo y)dA = J J (rcos 6, rsin ) rdrde. Y= =ys
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THEOREM 16.3 Change of Variables for Double Integrals over Polar
Rectangle Regions

Let f be continuous on the region R in the xy-plane expressed in polar coordinates
asR={(r,0):0=a=r=ba=60=p}, where 3 — a = 2. Then fis
integrable over R, and the double integral of f over R is

foy)dA— J f (rcos 6, rsmO)rdrdO
VA S? g Co"@ ;Leol’rd-ﬁ Sv) Y U‘ﬁ 9"6 \Y"|
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THEOREM 16.4 Change of Variables for Double Integrals over More General
Polar Regions

Let f be continuous on the region R in the xy-plane expressed in polar coordi-
nates as

R={(r0):0=g0)=r=h0),a=06=p},
where 0 < 8 — a = 27. Then

B (h(6) ,

Hf(x, y)dA = J J ) f(rcos 6, rsin @) rdrde.
alg

R

y T

Inner interval
of integration:
g(0) =r=ho)

0=p Outer interval
of integration:

=Y

R={(r0):0=g0)=r=h@), a=0=p}
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Example - Volume with polar coordinates

Find the volume of the solid bounded by the surface z = 4 — x? — y? and the xy-plane
overtheregionR ={(r,0): 0<r<2,0<6 <2m}

Volume = f f(x,y)dA -
R + ‘5
A e 0 ;LFY
U 4-yY s 0 -Y St
g=4 X

T2 .
([ padh jz 3‘ e ) rordf
| [= Y| D\.

- S" Sb q:'r—VaoL'\feiﬁ
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Bewdkah on vyt by
< <J ey
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vz (6
ve4g

* (lb- >*) ydvdf
d

Example - Cartesian to polar coordinates

Evaluate the integral over R using polar coordinates

¥ 70.

z

’)
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Example - Cartesian to polar coordinates

Evaluate the integral over R using polar coordinates

s 16557
jJ (16 —x? —y?) dx dy
-4 J0 4 50& 46
X = -Y~ AT
-:.S vgtr([(a‘y‘—)yo.vol'e' S.’“ Sb léy
_.’I?L: % T .
(33 v ) "'__)__q, )—-b A8
- (3 (sr- fr) |, )q 5 )
- 2
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Example - Volume between surfaces

Find the volume of the solid bounded between the surfaces z = 2x? + y? and
z =27 —x%—2y2, ~ A
g (R . 2P = 2T1- X Y

Rej™=

T 2 X +5Y ve21
2=27 %~ 27 2 (x"—ﬁ‘j») X 2
xd >
R i =« Jdicke q"t rodins %
e cantorak ort (o-°7

[ - & Ve lune = ﬂ [7 uj) (X ﬂ“)]aux
/ '- (( 21 - af' 1Y oAA S Sf 21- 3 gD MA

2.1
L .(@7 Hjnk\role fuf 2Tr -3 4o < S 2y Q"\ AGE j saa

’P Pearson ALWAYS LEARNING Copyright © 2019, 2015, 2011 Pearson Education, Inc. Slide 10



Reg K . 3e v €iremh

1l = |t%sD
Example - Describe a region BoudAon ©: * A
—1L - _u @g
3= V72

Write ff f(r,0)dA asaniterated integral over R in polar coordinates where
R

R is the region outside the circle r = %and inside the cardioidr = 1 4 cos 6.
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Definition Jacobian Determinant of a Transformation of Two Variables
Given a transformation 7 : x = g(u, v), y = h(u, v), where g and h are differentiable on a region of the uv -plane,

the Jacobian determinant (or Jacobian) of Tis

Theorem 16.8 Change of Variables for Double Integrals

LetT : x = g(u,v),y = h(u, v) be a transformation that maps a closed bounded region S in the uv -plane to a
region R in the xy-plane. Assume T is one-to-one on the interior of S and g and h have continuous first partial

derivatives there. If fis continuous on R, then

ﬂf(x.>')di=

dxdy”

R

vb .

]f(g(u. v), h(u, v))|J(u, v)| dA.
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Theorem 16.5 Triple Integrals

Let fbe continuous over the region
D={(xy,2): a<x<bgkx)<y<hkx),Gkxy <z<Hxy)}

where g, h, G, and H are continuous functions. Then fis integrable over D and the triple integral is evaluated as the

iterated integral
b h(x) H(x,y)
"// fx,y,2)dV = / / / f(x,y,2) dzdy dx.
> a gx) G(x,y)

Notice the analogy between double and triple integrals:

area of R = //dA and 3 SS“' 1A
volume of D = ///dV. = SSSD ldv

The use of triple integrals to compute the mass of an object is discussed in detail in Section 16.6.



ol ZolxaY

AZdY X :

Mf} ’2 Figure 16.33
X ol7dY

oY dx o2 T

cty oAz ¥

Ay,

/] D AV, = Ax, Ay, Az,
\
5
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Triple integrals

Two applications of triple integrals

1)
gf 1dV = Volume(D)

2) If p(x,y,z) represents the density of a
solid at any point (x, y, z) of a solid then AV,

jff p(x,v,z)dV = mass(D) / ) -
D oA 2
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THEOREM 16.5 Triple Integrals
Let f be continuous over the region

D= {(x,y,2);a=x=bgx) =y=h(x),G(xy) =z=HxYy)},

where g, h, G, and H are continuous functions. Then f is integrable over D and the
triple integral is evaluated as the iterated integral

(b [h) [H(x)

f(X,y,Z)dV— .f('xay, Z)dZdydx.

2 a Jg(x) JG(x,y) ——
9

\ Lmes parallel to y-axis
x | exit Rat) = h(x) ‘ )
P P\SfJ»
: o

y = h(x) (xvaries | p

' Lines parallel to y-axis

fromato b
N 4 enter Raty = g(x)

b _hix) H(x,y)

”jf(‘ poav=[| ff(u y.2) dz dy dx

a "g(x)"G(x, y)
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Table 16.2

Integral Variable Interval

Inner Z G(x,y) =z=H(xy)
Middle y 2(x) =y = h(x)

Outer X a=x=0>b
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Example - Triple integral over a box

/
szzjlyzexdxdzdy :-J—ng,z(o%exl L3 d%dp
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Example - Volume of a solid

The prism in the first octant bounded by z = 2 — 4x and y = 8.
>0 = - =0
;Z’L\'X Z =) 7-4X
% 2 :Ll'x

ZT f
J£=
) 2-4X
z 85 Loz oY eby
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Example - Evaluate the triple integral
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Example - Write in the indicated order

D is the solid in the first octant bounded by the planesy =0,z = 0,and y = x and
the cylinder 4x? + z? = 4.

A Jﬂ f(x,y,z)dV Order: dz dy dx
D iz =4  e- 4=uX" 2=y

f j“"”‘”-f (%Y ) g Z Z=0. 4x'=to‘=¢}
[ x5\
Y m Y=%)
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